Систему противовирусной защиты можно применить для эффективной иммунотерапии рака
Систему противовирусной защиты можно применить для эффективной иммунотерапии рака

Систему противовирусной защиты можно применить для эффективной иммунотерапии рака

❤ 83 , Категория: Без рубрики,   ⚑ 29 Июл 2016г


Немецким ученым удалось создать принципиально новую противораковую вакцину. Они запаковали матричную РНК генов, специфичных для раковых клеток, в особые наночастицы и заставили их адресно проникать в дендритные клетки лимфоидных тканей. В результате дендритные клетки «инструктировали» Т-лимфоциты и направляли их в атаку на раковый антиген, то есть на раковые клетки. Испытания на мышах и даже на пациентах, больных меланомой, показали высокую терапевтическую и профилактическую эффективность новой вакцины.

Методы неоперативного лечения рака постоянно совершенствуются. Но даже такие массовые методы, как радиотерапия и химиотерапия, не всегда достаточно эффективны и избирательны, обладают побочными эффектами и могут вызывать осложнения. Например, химиотерапия цитостатиками очень тяжело переносится пациентами.

В последнее время всё более активно разрабатываются методы иммунотерапии рака и других трудноизлечимых заболеваний. Так, недавно мы обсуждали работу по созданию бивалентных антител применительно к вирусу иммунодефицита человека (Биспецифические антитела могут уничтожать скрытые резервуары ВИЧ-инфекции, «Элементы», 16.02.2016). Этот метод можно приспособить и к адресной доставке Т-киллеров к раковым клеткам. Но на чужеродные антитела, применяемые в таких системах, может развиться нежелательный иммунный ответ. Поэтому активно проводятся исследования, имеющие целью мобилизовать и усилить собственный иммунный ответ организма на раковую опухоль, связанный с Т-лимфоцитами.

Система клеточного иммунитета замечательна своей гибкостью и эффективностью. Одна из важных составляющих этой системы — так называемые антигенпрезентирующие дендритные клетки. Они локализованы в лимфоидных органах (селезенка, лимфоузлы, костный мозг) и способны поглощать чужеродные для организма антигены, расщеплять их на отдельные пептиды и выставлять эти пептиды на своей поверхности для «обозрения» другими клетками, прежде всего Т-клетками. Таким образом дендритные клетки как бы «обучают» Т-клетки и направляют их в атаку на нужный антиген.

Дендритные клетки представляются идеальным инструментом для эффективной инициации и усиления Т-клеточного иммунного ответа на чужеродный антиген. Обычно в организме этот механизм направлен на нейтрализацию вирусных инфекций. Но большому коллективу ученых из нескольких научных учреждений в Германии удалось приспособить его для иммунотерапии раковых опухолей. Важно подчеркнуть, что это весьма нетривиальный результат, потому что иммунная система обычно не воспринимает раковые клетки как врагов (плохо срабатывает распознавание «свой — чужой», потому что раковые клетки, в общем-то, «свои»), а также из-за того, что образование опухоли часто не сопровождается выделением каких-либо специфических антигенов. Более того, раковые клетки довольно долго эволюционируют внутри организма в постоянном контакте с иммунной системой, так что на них действует своего рода отбор на способность противостоять иммунному ответу.

  Рыбная диета предотвратит инсульт

Ученые решили не нагружать дендритные клетки уже готовым антигеном, специфичным для раковых клеток и отсутствующим в зрелых нормальных клетках, а предоставить им возможность самим синтезировать его на основе соответствующих мРНК. Трудность, однако, в том, что в кровотоке свободная РНК быстро разлагается активно работающими нуклеазами. Поэтому для доставки «антигенных» РНК в предшественники дендритных клеток использовались специальные наночастицы — липоплексы (разновидность метода ДНК-вакцинации). Это слоистые структуры, в которых липидные мембраны защищают мРНК (рис. 2).

Первой проблемой, которую требовалось решить, была адресная доставка этих липоплексов в лимфоидные ткани, где локализованы дендритные клетки и активируются Т-клетки. Оказалось, что для этого не нужно добавлять ничего лишнего: ученым удалось подобрать соотношения мРНК и липидов, при которых после внутривенного введения липоплексов экспрессия мРНК наблюдалась практически исключительно в лимфоидных тканях мышей — селезенке, костном мозге и лимфоузлах (рис. 3).

Для исследования биологических эффектов — ответа организма на экспрессию мРНК в дендритных клетках — сначала провели модельные эксперименты. Липоплексы нагрузили РНК, кодирующей гемагглютинин вируса гриппа. В результате внутривенного введения таких частиц в селезенке наблюдалось созревание дендритных клеток и активация различных типов Т-клеток. Это сопровождалось характерной для противовирусного иммунного ответа активацией экспрессии интерферона альфа. Если же липоплексы были нагружены мРНК, кодирующими фрагмент овальбумина, которым были мечены клетки меланомы, или кодирующими гликопротеин gp70 вируса лейкемии мышей, то наблюдалась продукция Т-клеток против этих антигенов и клеток. В результате трехкратного введения таких липоплексов иммунный ответ «запоминался» и обеспечивал защиту после трансплантации соответствующих опухолевых клеток. В то же время неиммунизированные мыши погибали в течение 30 дней после трансплантации.

Для определения эффективности такого лечения на мышах был испытан ряд раковых моделей. Так, трехкратное введение липоплексов приводило к полному излечению меланомных метастаз в легких в течение 20 дней после последней иммунизации (рис. 4). Сходные результаты были получены и на других моделях, а также на обезьянах. Ни у мышей, ни у обезьян при введении липоплексов не наблюдалось никаких неприемлемых побочных эффектов.

  Из-за гайморита нередко страдает мозг

Результаты детальных экспериментов, проведенных на модельных животных, позволили авторам получить разрешение и провести испытания нового метода на пациентах, больных далеко продвинутой меланомой. Несмотря на то что выборка мала (испытания были проведены только на трех пациентах), полученные результаты впечатляют и выглядят многообещающими. Липоплексы были нагружены мРНК четырех различных антигенов, свойственных клеткам меланомы, и введены пациентам: сначала малая доза, а затем четыре увеличенных дозы еженедельно. Инъекции переносились пациентами достаточно хорошо, вызывая лишь симптомы простуды. У всех пациентов наблюдалось усиление синтеза интерферона альфа и резкое увеличение продукции Т-клеток против введенных антигенов. У одного пациента наблюдалсь регрессия метастазов в лимфатических узлах. У второго пациента, у которого до иммунизации были удалены метастазы, в течение семи месяцев (вплоть до момента публикации статьи) новых метастазов не наблюдалось. У третьего пациента, у которого до иммунизации было найдено восемь метастазов в легких, их дальнейшего роста не происходило.

Таким образом, авторам удалось создать принципиально новую вакцину на основе мРНК, которая обладает высоким терапевтическим потенциалом. Впервые в истории создания подобных вакцин были проведены испытания не только на модельных животных, но и на больных, показавшие высокую противораковую эффективность (хотя, подчеркнем еще раз, данные пока есть всего по трем пациентам). Такую вакцину можно приготовить быстро, она сравнительно недорога, а мРНК может кодировать практически любой опухолевый антиген. В общем же, описанный подход к иммунотерапии с помощью мРНК-наночастиц открывает новые перспективы в лечении рака.

Разумеется, предложенную систему иммунотерапии нужно еще продолжать исследовать. Надо выяснить ее применимость к другим типам рака, а также испытать целый ряд мРНК антигенов, которые экспрессируются в опухолях, но не в нормальных зрелых клетках. Следует также исследовать способность других клеток иммунной системы (нейтрофилов, моноцитов) поглощать наночастицы и активироваться под их влиянием. Работа предстоит еще очень большая, но хочется верить, что она даст хорошие результаты.

Источники:
1) Lena M. Kranz et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy // Nature. 2016. V. 534. P. 396–401.
2) Jolanda De Vries, Carl Figdor. Immunotherapy: Cancer vaccine triggers antiviral-type defences // Nature. 2016. V. 534. P. 329–331.

Вячеслав Калинин

Комментарии (4)

  Бретарис Дженуэйр – инструкция по применению, показания, дозы

Последние новости: Онкология, Иммунология, Медицина, Вячеслав Калинин

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Дмитрий Сутормин, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 X, IX, VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science


По теме: ( из рубрики Без рубрики )

Оставить отзыв

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*
*

наверх